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SUMMARY 

Results are presented for the unsteady, two-dimensional flow and heat transfer due to a square obstruction of 
diameter d located asymmetrically between the parallel sliding walls of a channel with length-to-height ratio 
W / H  = 6.44. Analysis is based on the numerical solution of spatially and temporally second-order accurate finite 
difference approximations of the transport equations expressed in curvilinear co-ordinates. Laminar, constant 
property flow is assumed for obstruction configurations in which the blockage ratio is d/H=0-192, the nearest- 
wall distances are g/d= 0.2,0-5 and 1, the orientation angles are a= 0", 10" and 20" and the Reynolds numbers are 
Re=lOO, 500, and 1000. Preparatory testing of the numerical procedure was performed for a variety of 
documented flows to verify its physiconumerical accuracy and obtain estimates of the residual grid-dependent 
uncertainties in the variables calculated. Heat transfer, drag and lift coefficients and Strouhal numbers for the 
present flow were finally calculated to within 4%-7% of their grid-dependent values using non-Uniformly spaced 
grids consisting of (x = 99, y = 5 5 )  nodes. Above a critical value of the Reynolds number, which depends on the 
geometrical parameters, the flow is characterized by alternate vortex shedding fiom the obstruction top and bottom 
surfaces. Streamline, vorticity and particle streakline plots provide qualitative impressions of the unsteady vortical 
flow. Especially noteworthy are the extremes in the lift coefficient which ranges from large positive values for an 
obstruction with g/d= 0.2 and a = 10" to negative values for one with g/d = 0.5 and a = 0". Both the drag and lift 
coefficients as well as the Strouhal number exhibit non-monotonic variations with respect to the parameters 
explored. Asymmetries in the obstruction location and orientation account for relatively large vortex-induced 
periodic variations in heat transfer, especially along the wall nearest the obstruction. Notable differences are also 
predicted for the heat transfer coefficients of the individual obstruction surfaces as a hc t ion  of the orientation 
angle. 

KEY WORDS square obstruction; channel flow; vortex shedding; sliding walls; numerical calculation 

1. INTRODUCTION 

1.1. The problem of interest 

The motion of a fluid past an immobile cylindrical obstruction with its longitudinal axis aligned 
normal to the approaching flow is of fundamental interest and considerable practical importance. Bluff 
body cross-flow configurations of this type arise in numerous industrial applications and 
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environmental settings, including: the passages in equipment used for heat and mass transfer 
processes; flow-metering devices; the cooling of electronic components and equipment; the obstructed 
spaces between co-rotating disks in magnetic disk storage devices; moving ground vehicles; tall 
buildings and structures such as chimneys, cooling towers, electrical pylons and offshore oil rigs. 
Bluff-body-induced flow unsteadiness and mixing can be used to advantage to enhance heat and mass 
transfer to or from the bluff body and/or its surroundings. However, the same flow unsteadiness gives 
rise to fluctuating drag and lift forces which can stress the body by making it vibrate. For example, 
together with fluctuating temperatures, the latter situation represents a potentially disastrous condition 
for the tubes in a heat exchanger tube bank. Similarly, flow-induced vibrations may seriously impair 
the reaawrite performance of a magnetic disk storage device. 

Aside from the above practical motivating factors, the unsteady flow and heat transfer associated 
with cylindrically shaped bluff bodies are interesting in their own right and have been the subject of 
considerable basic research. In these studies the principal objective has been to measure and/or 
calculate the field variables and related quantities from which to determine cylinder drag and lift 
coefficients as well as Strouhal and Nusselt numbers. The studies can be classified according to the 
number, arrangement and cross-sectional shapes of the cylinders, the character of the approaching flow 
(laminar or tubulent) and whether it is of a he-stream or confined type. Most of the flow and heat 
transfer work reported in the literature pertains to single cylinders of circular or rectangular cross- 
section immersed in freestreams at both low and high speeds. Useful reviews have been compiled by 
Manis,' Berger and Wille' and Morgan? Subsequently, noteworthy investigations have been 
performed by, among others, Davis and Moore: Okajima? Braza et ~ l . , ~  Igara~hi,'~* Franke et 
Gresho and Chan," Cheng et al.," Rodi," Okajima et al.,I3 Karniadakis and Trianta@ll~u'~ and Kato 
and Launder." A single study, by Vickery,16 provides measurements of lift and drag RMS fluctuations 
as a function of the angular orientation of a cylinder of square cross-section immersed in a high-speed 
turbulent flow. That author shows that an angle of attack a > 15" can reduce the RMS of the lift 
fluctuations by an amount ranging between 50% and 13% depending on the turbulence level of the 
approaching flow. 

The present study concerns cylinders in con3ned cross-flow configurations. Specifically, it concerns 
the numerical calculation of the unsteady streamlined motion of a fluid flowing past a single immobile 
cylinder of square cross-section located between the parallel walls of a two-dimensional channel, with 
the longitudinal axis of the cylinder aligned parallel to the channel walls and normal to the approaching 
flow. For conciseness, the two-dimensional geometry of interest is drawn in Figure 1. This shows that 
the cylinder location hlH and its angular orientation with respect to the horizontal, a, are both variable 
and that the channel walls may slide in the direction of the approaching flow at speed U, (The sliding 
wall condition is especially relevant to the aerodynamics of ground vehicles and magnetic disk drives.) 

R 

Figure 1.  Schematic of the two-dimensional flow configuration of interest. In this work w/d= 1 and U,JUi= 1 
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Because of these three conditions, the bulk of the work performed to date on cylinders in fiee and 
confined flow configurations has but limited applicability to the present problem. A review of relevant 
information is summarized next, with additional details provided in Reference 17. 

1.2. Related earlier work 

In comparison with the freestream case, there is significantly less work on the flow and heat transfer 
for cylinders in confined cross-flow configurations. BearmanI8 has reviewed much of the earlier 
literature on related flow configurations pertaining to obstructions near stationary and sliding walls; the 
majority of the citations are experimental and correspond to turbulent, three-dimensional unsteady 
flows. Subsequently, in a series of detailed experiments, Marumo et al.,19,20 H. Suzuki et al.?' and K. 
Suzuki et a1.,22 have systematically investigated the enhanced transport of heat through a turbulent 
boundary layer developing along a fixed flat wall perturbed by a single cylinder of circular cross- 
section located at different distances from the wall. These experimental studies show that, combined, 
the acceleration of fluid through the cylinder-wall gap and the overall (cylinder-induced) flow 
unsteadiness are responsible for marked increases in the heat transfer coefficient along a significant 
portion of the wall downstream of the cylinder. Similar fluid mechanics investigations ranging from 
Re = 70 to 3 x lo4, approximately, have been performed by Ta~~eda,*~ Bearman and Zdravk~vich~~ and 
Kamemoto et al." The latter two studies show that vortex shedding from the obstruction is 
significantly suppressed for cylinder-wall gap sizes dlg < 0-3. While these investigations have focused 
on understanding the complicated cylinder-wall momentum and heat transport interactions, because 
they are primarily for circular cylinders in semiconfined turbulent boundary layer flows, the results are 
mostly of qualitative relevance to the present work. 

Studies involving more than one cylinder arranged in a channel with fixed walls, such as two in 
tandem or a periodic array, have been performed by, for example, Karniadakis et a1.?6 Yao et al.?' 
Amon and Mikic?' T~zidle?~ and Tatsutani et ~ 1 . ~ '  In particular, Kamiadakis et al.26 show that 
cylinder-induced low-Reynolds-number flow instabilities of a non-tztrbulent nature produce channel 
wall heat transfer rates comparable with those of turbulent flows in unobstructed channels while 
incurring significantly less dissipation. This finding is of special interest to the present study and 
therefore a carefbl consideration of the work performed in channel flow configurations involving 
unsteady but streamlined fluid motion past single cylinders is appropriate. Table I summarizes the 
parameter ranges explored in three especially relevant investigations which are discussed next. 

Table I. Summary of the parameter ranges investigated numerically in three cylinder+hannel flow configurations 
especially relevant to the present work. Refer to Figure 1 and the Appendix for the definition of symbols. In the 
study of Davis et a1.,3' 87% of the grid was contained in a section of the channel with WIH=4 

Authors a hlH gld dlH wld WIH UJUi Re 

Davis et aL3' 0" 0.5 2.5 0-167 0.6 00 0 50-925 
1-5 0.250 1.0 

1 -7 
Suzuki et aL3* 0" 0.5 9.5, 4.5 0-05, 0.1 1 12 0 37.5-150 

2.0, 1.17 0.2, 0.3 
0.75, 0.50 0-4,  0.5 

Arnal etaLS3 0" 0.03125 0 0.0625 1 2-5-5 0, 1 50-2000 
Present work 0" 0.135 0.2 0-192 1 6-44 1 100 

10" 0.192 0.5 500 
20" 0.288 1.0 1000 
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In an extension of earlier work on freestream flows, Davis et ~ 1 . ~ ~  studied the flow past single 
cylinders of rectangular cross-section located on the centreline of a two-dimensional channel with 
fixed walls. Both measurements and calculations were performed in the Reynolds number range 
50 < Re < 925. The authors found good correspondence, ranging from about 4% to 13%, between the 
measured and calculated non-monotonic variations in the Strouhal number St as a function of Re. For 
both the blockage ratios examined, dlH=O-167 and 0-250, they observed that St initially increases 
sharply with Re up to Re = 250-300, as of which St slowly decreases with M e r  increases in Re. They 
show that (for fixed Re) St increases with increasing blockage ratio dlH and that it is larger for the case 
of a uniform inlet channel profile than for one parabolic in shape. Similarly, the average drag 
coefficient was found to increase with increasing Re and increasing dlH and was larger for a uniform 
inlet velocity profile than for a parabolic one. The variations in the instantaneous lift and drag 
coefficients calculated for cylinder aspect ratios wld = 0-6, 1 *O and 1.7 at Re = 125 were described by 
simple sinusoids, but for w/d = 1 and Re = 500 they displayed more complex variations. Comparisons 
between calculated and visualized streaklines in the wake of the cylinder with wld = 1 showed good 
qualitative agreement for values of Re= 125-145 (with d/H= 116), 250-275 (with d/H= 114) and 500- 
550 (with d/H= 114). Unsteady recirculating flow regions were predicted along both channel walls 
downstream of the cylinder for the cases with w/d= 1, dlH= 114 and 116 at Re= 500. 

In an investigation very similar to that of Davis et ~ 1 . : ~  Suzuki et ~ 1 . ~ ~  visualized and calculated the 
unsteady two-dimensional flow past a square cylinder in a channel with fixed walls. The Reynolds 
number range explored was 37.5 < Re < 1 50 and, as in Reference 3 1, uniform and parabolic inlet flow 
profiles were investigated. The ranges of the geometrical parameters are given in Table I. One 
calculation with dlH= 0-3 and Re = 150 was performed for hlH= 0.45,0.325 and 0.2 to investigate the 
effect on the flow due to changing the cylinder location relative to the channel walls. Another with h/ 
H=0.5 and d/H=O.3 at Re= 150 involved sliding walls. Regrettably, neither set of results was 
discussed in depth. Many of the features predicted by the authors for the other flow configurations are 
qualitatively similar to those calculated by Davis et al. ' However, the following additional findings are 
noted. The flow visualization results confirmed the assumed two-dimensionality of the flow up to 
Re = 150 or, equivalently, ReH = 500. Both the visualized and calculated flow patterns revealed that, for 
all values of d/H > 0.1 for which shedding occurred, the vortices alternately shed from the cylinder 
exhibited a 'criss-crossing' behaviour with respect to the channel centreline as the fluid moved 
downstream. This effect is also present in the calculatiolns of Davis et ~ 2 1 . ~ ~  and was observed even 
earlier in the flow visualization study of Zdravk~vich.~~ For the case with dlH= 0.3 the wall regions of 
the channel flow were noticeably disturbed by the vortices shed from the cylinder. 

The two-dimensional flow past an immobile cylindrical obstruction of square cross-section placed 
immediately adjacent to one of the two walls of a channel, for both fixed and sliding walls conditions, 
has been investigated numerically by Arnal et al.33 Eight values of the Reynolds number were 
calculated for the parameter ranges listed in Table I. Numerical tests led the authors to conclude that 
the imposition of a non-reflecting wave boundary condition at the exit plane and the use of non- 
uniform grids ranging between (1 13, 37) and (1 3 1, 37) nodes were sufficient to resolve the flow cases 
explored to better than 16% for the average drag coefficient and 1 % for the Strouhal number. (Note 
that the Strouhal number in Reference 33 is incorrectly defined in their equation (1 0). This should read 
St = fH/UB, where H is the cylinder diameter and UB is the inlet flow velocity.) The grid Reynolds 
number in these calculations ranged between ReA = 5 and 100 approximately. As in References 3 1 and 
32, calculations were also performed for the case of a square cylinder in freestream flow. 

Among the authors' main findings for the sliding wall case are the following. For Re < 100 the flow 
field solutions were steady. At Re = 100 a mild flow unsteadiness was observed in the wake of the 
square cylinder. Periodic shedding of positive and negative vortices occurred somewhere between 
Re = 100 and 250. Relative to a square cylinder in a freestream, the presence of a sliding wall increased 
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the critical Reynolds number at which the flow became unsteady while simultaneously stabilizing the 
resulting unsteady flow in a strongly periodic motion. The same stabilization phenomenon has been 
observed experimentally by T a r ~ e d a ~ ~  for the case of a circular cylinder towed along the fixed wall of a 
channel. Arnal et attribute the stabilization of periodic motion to the positive vorticity generated 
in the wall-cylinder corner immediately behind the cylinder (when the wall slides from left to right as 
in Figure l ) ,  an effect of special importance to this work. Calculations of the cylinder drag coefficient 
for the sliding wall case showed that, as for the freestream case, this quantity increases with increasing 
Re but its magnitude is 60%80% larger in the range 100 <Re < 1000. Also, relative to the freestream 
case, the sliding wall had the effect of reducing the cylinder Strouhal number by as much as 45% in the 
same range of Reynolds number. 

This section concludes with the following general observations for cylinders of square cross-section 
in the parameter ranges 100 <Re < 1000 and 0 < d/H< 0.25. 

(1) Relative to a square cylinder in a freestream, at all Re the Strouhal number, St, and the average 
drag coefficient, CD, for an identical cylinder located symmetrically on the centreline of a channel with 
fixed walls are both larger by amounts directly proportional to the obstruction ratio d/H. For both the 
freestream and fixed channel wall cases the respective CD coefficients increase parabolically with Re. 
St initially increases sharply up to Re = 250-300, as of which point it decreases slowly with fiu-ther 
increases in Re. 

(2)  For a pair of square cylinders placed immediately adjacent to the walls of a channel such that 
they face each other symmetrically, with d/H=0.0625 for each cylinder, the following may be said. For 
both the fixed and sliding wall conditions St is significantly smaller and CD significantly larger than for 
the freestream case. For comparable values of dlH the drag on a cylinder immediately adjacent to the 
sliding wall of a channel can exceed by a factor of 1 -5 that corresponding to a fixed wall condition. For 
both fixed and sliding wall conditions there is a critical value of Re, depending on the geometrical 
parameters, which marks the transition between steady and unsteady flows. 

( 3 )  Experimental evidence supports the notion of two-dimensional flow past a square cylinder in a 
channel with fixed walls up to at least Re=150. However, it is known that the wakes of circular 
cylinders and bluff bodies in free streams undergo a transition from two-dimensional streamlined 
motions at Re=200 to three-dimensional turbulent motions at Re=400.14 In the notable absence of 
any indications to the contrary, here it is tacitly assumed that the three-dimensionality which develops 
downstream of a cylinder in cross-flow has a negligible influence on space- and time-averaged 
quantities (such as drag and lift coefficients and Nusselt numbers) for the cylinder itself or the sections 
of the channel walls near it. 

1.3. Objective of this investigation 

From the above review it appears that little is known about the flow past single immobile cylinders 
of rectangular cross-section in channels with parallel sliding walls. The work of Amal et ~ 1 . ’ ~  points to 
significant variations in the Strouhal number as well as the drag and lift coefficients for a square 
cylinder placed immediately adjacent to the sliding wall of a channel. However, the centreline 
symmetry plane boundary condition used by those authors implies the presence of two cylinders facing 
each other in the channel, a configuration differing significantly from the asymmetrical one of interest 
here. In addition, none of the cylinder-channel studies reviewed above includes thermal effects. Thus 
the respective influences on the flow and heat transfer due to varying the location and angular 
orientation of a cylinder relative to the sliding walls of a channel remain essentially unexplored. 

The main objective of the present study has been to conduct a numerical investigation of these 
effects for forced convection flow conditions. The non-Cartesian nature of the flow configuration, 
involving a cylinder of square cross-section with arbitrary angular orientations, requires the application 
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of a body-fitted co-ordinate calculation approach. While previous studies using rectangular grids 
provide some indication of the level of grid refinement required to resolve the present unsteady flow, 
they have all been performed for numerical schemes that were second-order-accurate in space but only 
first-order-accurate in time. Since the findings of those studies do not necessarily apply to the present 
higher-order curvilinear finite difference scheme, an independent and fairly exhaustive investigation of 
its grid dependence characteristics has been performed. In this regard, references in the text to 'good' 
agreement are supported by quantitative statements where appropriate. 

2. THE NUMERICAL PROCEDURE 

Details concerning the derivation of finite difference approximations for the conservation equations 
and of the numerical procedure implemented for solving them are provided in Reference 35. Except for 
the more general curvilinear co-ordinate capability of the present numerical procedure, modelled along 
the lines of Schuh et al.,36 the calculation methodology closely parallels that of the CUTEFLOWS 
algorithm described by Schuler et al.37 This section summarizes the major points of interest. 

2.1. Conservation equations and boundary conditions 

'This study assumes a constant property (non-buoyant), unsteady but streamlined, two-dimensional 
flow over the parameter ranges explored. The relevant continuity, momentum and energy equations in 
arbitrary curvilinear co-ordinates ( < I ,  t2) are respectively 

While the symbols in the above equations are defined in the Appendix, the reader is reminded that 
(u, v)  are the (x, y )  Cartesian velocity components, the superscripts i and j denote contravariant 
components, the subscripts 5' and @ represent partial derivatives with respect to these curvilinear co- 
ordinates and the summation convention on repeated indices applies throughout. The contravariant 
velocity component U' is defined by the dot product U' = u - ai, where ai is the contravariant base 
vector given by a' = Vg' (i = 1, 2) and V is the gradient operator. 

Equations (1 H3) are elliptic in space and parabolic in time. They require appropriately formulated 
boundary conditions for their solution. With reference to Figure 1, the boundaries of the solution 
domain consist of the four surfaces of the square cylinder, the two surfaces (top and bottom walls) of 
the channel and the inlet and outlet planes of the channel. No-slip, impermeable wall velocity 
boundary conditions and constant temperature boundary conditions for the non-isothermal flows were 
imposed on the cylinder and channel surfaces. Uniform velocity (and temperature) profiles were 
specified at the inlet plane to yield the flow Reynolds numbers of interest. The translating velocities of 
the channel walls were fixed to the inlet plane velocity condition. At the outlet plane 
au/at+c(au/ax> = 0 and a(v, T > / &  = 0 were specified. The former is an open boundary 
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condition for u, where c is the speed of the u-wave, a quantity that is positive or zero. This condition 
has been employed and carefully discussed by, for example, Han et al. ,3' Arnal et al. ,33 Treidle?' and 
Tatsutani et aL3' It allows the correct development of the unsteady flow in an obstructed channel of 
finite length by permitting shear-induced vortical flow structures to pass through the outlet plane of the 
channel without reflecting waves at this boundary. In all cases the values of velocity and temperature 
prescribed at the channel inlet plane were used as the initial field values for the calculation conditions 
at the lowest Reynolds number. The calculated flow and temperature fields obtained at one Reynolds 
number were used as the initial conditions for calculations at the next highest Reynolds number. 

2.2. Finite diference approximations and solution methodology 

Finite difference forms of the transport equations are obtained by control volume integration on 
staggered grids as done by Humphreg9 for toroidal co-ordinates, but here derived for arbitrary 
curvilinear co-ordinates. Second-order-accurate schemes are used to approximate the diffusion and 
pressure gradient terms (using central differencing) and the convection terms (using the flux-limited 
form of the QUICK scheme proposed by to avoid overhndershooting in the calculations). 
The semidiscrete transport equations so derived are then solved for the contravariant velocity 
components and temperature using a time-explicit, second-order @redictor-corrector) Runge-Kutta 
method. By forcing the velocity field at each time step to obey the continuity equation, the solution to 
the pressure field is also obtained. In this regard, CUTEFLOWS employs the conjugate gradient 
method42 to solve the system of algebraic equations yielding the pressure field. In this study it was 
found that the modified strongly implicit method of Schneider and Zeda11,4~ also employed by Arnal et 
al.33 in a flow configuration similar to the present one, had essentially the same speed of solution as the 
conjugate gradient method but was less sensitive to singularities in the pressure coefficient matrix. For 
this reason it was the preferred method for calculating pressure. Because momentum and energy are 
decoupled in the present problem, the temperature field is calculated at the end of each time step after 
the velocity field has been obtained. 

2.3. Grid considemtions, algorithm testing and computational requirements 

The curvilinear grids used in this study were generated via a multiblock grid generation procedure. 
In this approach the calculation domain is subdivided into blocks and grid distributions are prescribed 

(b) 

Figure 2. Typical refinement and distribution of the numerical grid with (99,55) nodes used to calculate the two-dimensional 
flow of Figure 1 in the case with a= lo", h/H=0.192 (gld=0-5) and #H=0-192: (a) complete grid; (b) grid near the cylinder 
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VSuzuki et al. (1993) (num) 
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x Okajima (1982) (exp) 
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- 
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along the block boundaries. The algebraic method is then used to generate the grids inside each block 
and the resulting overall grid is finally smoothed out using the elliptic method. (See Reference 35 and 
44 for details of practical implementation.) Figure 2 shows an example of the refinement and 
distribution of a grid used to calculate the flow configuration of Figure 1. 

The goodness of the numerical procedure was verified by reproducing the flow and heat transfer 
results of five test cases, here deliberately calculated on non-uniform curvilinear grids over extensive 
ranges of the respective flow parameters. The calculations correspond to steady and unsteady flows. 
The steady solutions are for the wall-driven flow in a square enclo~ure?~ the buoyancy-driven flow in a 
square enclosure46 and the flow over a backward-facing step in a channe1.33.47348 The unsteady 
solutions are for the flow past a square cylinder in a f r e e ~ t r e a m ~ ’ ~ ’ ~ ~ ’ ~ ~ ’ ~ ~  and the flow past a cylinder of 
variable orientation in a channel with fixed walls.3s Of the latter two cases, the first was calculated on a 
non-uniform rectangular grid. 

Detailed comparisons with the data from these references are provided in Reference 35 and 
discussed in depth in Reference 17. Except for the case of the backward-facing step, all the results 
compared (velocity profiles, streamlines, vorticity and temperature contours, drag coefficients, 
Strouhal numbers and particle trajectories) were in good agreement for the other four cases. From these 
test case results and the additional information provided by Davis et u Z . , ~ ~  Arnal et and Suzuki et 
a1.,32 it was possible to quantify the levels of grid and time step refinements required to resolve the 
flow of primary interest to this work. In this regard the following three points are important to note. 

0 53x64 grid 
@ 67x78 grid 

AArnal et al. (1991) (num) 

2.2 

200 400 600 800 1000 

Re 
Figure 3. Comparison among (a) drag coefficient, CD, and @) Strouhal number, St, results for the flow past a square cylinder in a 

free stream 
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(1) A comparison between present calculations and the results of others for the average drag 
coefficient and the Strouhal number of the flow past a square cylinder in a freestream are provided in 
Figure 3. Present predictions, initially made using a non-uniform rectangular (53, 64) grid with ReA 
ranging from 10 to 100, depending on Re, yielded CD results in good agreement with the calculations 
of Davis and Moore4 over the entire range of Reynolds numbers (100 <Re < 1000). (For this flow the 
definition of the Reynolds number is based on the cylinder diameter and the freestream velocity.) In 
contrast, the results for St differ significantly, with the measurements by Okajima’ and Davis and 
Moore4 showing discrepancies ranging from 14% to 21% for Re > 250. Similarly, the calculations of 
Davis and Moore4 and Suzuki et aL3’ differ by as much as 25% for Re < 300. The present results fall 
between those of Davis and Moore4 and Suzuki et ~ 1 . ~ ’  for Re < 300 and are in close agreement with 
the experimental and numerical results of Davis and Moore4 for Re > 300. Except for the work by 
Suzuki et ~1.:’  for which the details of the boundary conditions are not available, the other 
calculations for this case were performed with symmetry plane boundary conditions imposed along 
parallel fictitious sliding surfaces located six cylinder diameters above and below the cylinder 
centre. 
Suzuki et ~ 1 . ~ ’  have suggested that the large differences between the respective measurements of Sr 

by Okajima’ and Davis and Moore4 may be partly due to the different velocity fluctuation levels in the 
approaching flows. That high values of turbulence intensity (ranging between 5% and 20%) are 
capable of significantly altering the average drag, lift and Strouhal number of the flow past a cylinder 
of square cross-section has been documented experimentally by, for example, Cheng et al. l 1  However, 
the RMS fluctuations in the experiments of Okajima’ and Davis and Moore4 are respectively quoted as 
being 0.5% and 0.05% of the freestream velocities. Berger and Wille’ discuss the influence of 
approaching flow velocity fluctuations on vortex shedding from circular cylinders for low Reynolds 
number (40 <Re < 170 approximately). They conclude that ‘... below Re = 100, a vortex-street 
configuration of extreme regularity and stable phase relation exists ... . Above Re=90, the regular 
street mode exists only at extremely low turbulence levels of the onflow, less than 0.05 percent. At 
higher turbulence levels only the high-speed mode could be found to be stable. Within a certain limit of 
turbulence level, 0.05-0.07 percent, both vortex-street configurations are metastable and, from time to 
time, change back and forth from one to the other’. 

Even though the observations of Berger and Wille’ are for cylinders of circular cross-section, it is 
conceivable that at low Reynolds numbers (Re < 200) Okajima’ and Davis and Moore4 could have 
observed different modes of oscillation frequency as a result of the different velocity fluctuation levels 
in their respective experiments. However, this is the range over which their data differ the least, by less 
than 3% compared with 14%-21% for Re > 250! Given that the differences in frequency between the 
two modes of oscillation referred to by Berger and Wille’ are of the order of 5% and that these modes 
arise at low Reynolds numbers, it seems unlikely that the much larger differences in frequency 
observed at much larger Reynolds numbers between the data of Okajima’ and Davis and Moore4 can 
be principally attributed to the different velocity fluctuations levels in the respective experiments. Since 
Okajima’ and Davis and Moore4 were both able to determine their respective Strouhal number data to 
within ?2%-5% RMS uncertainty, it is suggested that at least one of the two experiments was affected 
by unknown systematic error(s). 

(2) Additional calculations were performed for the flow past a square cylinder in a freestream at 
Re = 500 using non-uniform grids with (40,49) and (67, 78) nodes. Results for CD and St, also plotted 
in Figure 3, can be fitted to a polynomial to yield the (extrapolated) grid-independent values CD = 2.1 
and St= 0.144. From this it is possible to show that CD and St calculated on the medium (53, 64) grid 
are both within 7%-11% of their respective grid-independent results, while the values obtained on the 
finest (67,78) grid are within 4%-7%. A consideration of these numbers leads to the conclusion that to 
obtain CD and St results to within 1%-2% of their grid-independent values, grids more refined than 
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(1 80,220) nodes would be necessary. Unfortunately, for the number of cases planned for calculation in 
this study, such grid densities were simply unaffordable and a compromise was reached. 

(3) To further verify the ability of the numerical procedure to reproduce the features of the flow 
configuration of primary interest here, shown in Figure 1, the fixed wall channel flow apparatus of 
Tatsutani et d3' was modified as explained in Reference 35 to visualize the flow past a single square 
cylinder with the following characteristics: a =O", 10" and 20", hlH=0*273, dlH=O*182, wld= 1, W /  
H =  12.27, Re = 100-1000. The experimental flow conditions and the method of visualization were 
reproduced numerically with the channel length set to WIH= 6-44, for calculation economy, to yield 
calculated streaklines in good qualitative agreement with the ones ph~tographed.~~ 

Three instances of the flow visualized numerically on a (99, 55) grid are shown in Figure 4. These 
reveal an unexpected result which was observed for all the experimental and numerical conditions of 
this case: that the less intense vortex detaching from the bottom surface of the cylinder wraps around 
the more intense vortex detaching from the top surface as the flow moves downstream. Such behaviour 
has not been observed in previous studies with the cylinder located symmetrically on the channel 
midplane (i.e. with a= 0"). It is the result of the flow asymmetry induced by rotating the cylinder to an 
angle a> 0" andor by displacing it from the channel midplane. The predictions of Suzuki et a1.,32 for 
the flow past a square cylinder with a = 0" at various distances from the fixed walls of a channel, do not 
show this 'vortex-wrapping' phenomenon either. This is attributed to the larger cylinder-channel 

I (a) Re-200, a-0'. I 

I (b) Re=200. a=20°. I . .  

I [c) Re=100. a=20°. I 

Figure 4. Instantaneous numerically calculated streaklines for the experimental conditions of this work corresponding to the flow 
past a square cylinder in a channel with fixed walls: hlH=0.273 @Id= 1.0), d/H=0.182 and W/H=6*44 (WIH= 12-27 in the 

experiment) 
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Table 11. Average values of the measured ( S t a  and calculated (St,) Strouhal numbers for the flow past a cylinder 
of square cross-section in a channel with fixed walls and in a free-stream respectively. The channel flow conditions 
are h/H= 0-273 &/d= 1 *O), d/H= 0.1 82 and wld = 1. The values of St, in the channel are from the present work, 
those in the freestream are averaged from the two data sets in Reference 4. The RMS uncertainty in St, is 5% 
approximately. All the values of St, are from this work and are estimated to be accurate to within 7% 

Re u=oo u =  10" u = 20" Freestream 

200 stm 0.235 0.242 0.228 0.144 

600 stm 0.188 0.242 0.211 0.144 

StC 0.230 0.220 0.212 0.150 (interpolated) 

StC 0.195 0.232 0- 186 0-153 (interpolated) 

1000 stm 0.151 0.228 0-194 0.137 
S t C  0.180 0.233 0-190 0.146 

obstruction ratio explored by them, d/H=O-3, compared with the present value of 0.182. For values of 
Re < 400 the present experimental flow was essentially two-dimensional about the vertical symmetry 
plane of the channel, i.e. the plane dividing the cylinder into two equal lengths. For Re > 600, flow 
three-dimensionally appeared within 5d to 1Od lengths downstream of the cylinder. 

A quantitative comparison between measured and calculated values of St, provided in Table 11, 
shows that agreement ranges between 2% and 10% approximately, except for the values at Re = 1000 
with a = 0" which differ by 19%. (The RMS uncertainty in the experimental value of St is estimated to 
be 5% approximately.) Both the measurements and calculations show that for fixed a, Sf tends to 
decrease with increasing Re, while for fixed Re, St tends to maximize at an orientation angle between 
a=Oo and 20". 

3. RESULTS 

Table I shows the geometrical and dynamical conditions investigated for the sliding wall flow 
configuration of Figure 1. With reference to that figure, W/d=33.5, L/d=4.5 and d/H=O.192 were 
set in all the calculations. An example of the non-uniform curvilinear grids used for a cylinder with h/ 
H =  0.192 and a = 10" is shown in Figure 2. All the cases presented under this heading were calculated 
using grids with (99,55) nodes to obtain node densities comparable with the finest employed in the test 
cases discussed above. The grid Reynolds numbers ranged from ReA=5 to 80 for the values of Re 
investigated. From the extensive tests performed, it is estimated that the level of grid refinement 
imposed in the vicinity of the cylinder and channel surfaces allowed predictions of the drag, lift and 
Nusselt number to better than 7% and of the Strouhal number to better than 4% of the grid- 
independent values of these quantities over the parameter ranges investigated. 

The calculations were performed non-dimensionally. For the forced convection heat transfer cases a 
Prandtl number Pr=O.71, corresponding to air, was assumed. Two heat transfer conditions were 
investigated. In one case the cylinder surfaces were uniformly fixed at a higher temperature than the 
channel walls and inlet flow, the latter two being at the same temperature. In the other case the channel 
walls were uniformly fixed at a higher temperature than the cylinder surfaces and inlet flow, the latter 
two being at the same temperature. In a calculation sequence to investigate the effects on the flow of a 
particular choice of parameters, the first calculation at the lowest Reynolds number was started with 
the initial velocity (and temperature) fields specified to the values at the channel inlet plane. 
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Calculations at the next value of the Reynolds number were then started from the converged fields 
obtained at the previous setting of that parameter. A numerical run was taken to its steady or periodic 
state, as determined by monitoring the time rate of change of the drag and lift coefficients. Within each 
time step in a numerical run the criterion for convergence was that the residual mass balance should be 
less than a non-dimensional value of In selected cases, finite perturbations deliberately imposed 
on a converged flow field were observed to dampen out to yield field solutions identical with the 
unperturbed ones. 

The main findings, pertaining to the effects of h/H, a and Re on the flow as well as some results for 
heat transfer, are discussed below. Space constraints require that attention be restricted to a 
representative sample of the many plots available in Reference 35 for values of the Reynolds number 
equal to 100, 500 and 1000. 

3.1. Parameter effects on the flow 

While the parameter hlH in Table I unambiguously fixes the location of the cylinder centre relative 
to the channel walls, the quantity g/d= (h - d/2)/d (also given in Table I) provides a more readily 
visualized dimensionless measure of the minimum distance between the bottom cylinder surface and 
the channel wall. This measure is exact for a=Oo and in error by a few per cent for a= 10" and 20". 

Figures 5 and 6 show plots of the instantaneous streamlines, vorticity and streaklines in flows with 
a= 0" and 10" respectively for Re = 500 and g/d= 1.0. Figure 7 shows the corresponding plots for 
a = 10" in a flow with Re= 500 and g/d= 0.2. The first pair of figures illustrates the effect of a, while 
the second pair shows the effect of gld. Plots of the time-averaged drag and lift coefficients as well as 
the Strouhal number for all the cases explored are provided in Figures 8-10." 

Except for two flow configurations at Re= 100 with the cylinder very near the channel wall 
(g/d= 0.2 with a= 0" and 10" respectively), the rest yielded unsteady solutions as evidenced by the 
alternating shedding of vortices from the top and bottom surfaces of the cylinder. The vorticity plots of 
Figures 5 and 6 show especially clearly that the flow approaching the cylinder comes to rest at a 
stagnation point on its upstream surface, the location of which depends on a. As expected,49 with 
increasing a the stagnation point moves towards the corner of the cylinder projecting M e s t  into the 
approaching flow. At all three values of Re, flow separation occurred at the upstream corners of the 
cylinder. With increasing a the recirculation region above the top surface of the cylinder grew modestly 

, I. ' 
. .  

1 ' ' ' .  I . . . .  . . . .  

, ._... . .... . c . .. . ,.- . . .  _ _  . . . . .  

. .  , *.. , I, .. , .. - - -  . ._ . I ,  

Figure 5. Instantaneous streamlines (top), vorticity contours (middle) and particle streaklines (bottom) for the flow past a square 
cylinder in a channel with sliding walls and a=O", h/H=0.288 @Id= 1.0), d/H=O.192, Re=500 
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Figure 6. Same as Figure 5 with a= lo", h/H=0.288 (g/d= 1.0), d/H=0.192, Re=500 

in size while that below the bottom surface became substantially smaller. For Re and a fixed, reducing 
the gap size (gld) fiuther decreased the sue of the bottom recirculating flow region relative to the top. 

From the work of Arnal et al.33 the present flow is expected to undergo a transition from steady to 
unsteady motion at some characteristic value of Re which depends on the geometrical parameters. A 
calculation performed with Re = 100 for the conditions of Figure 7 revealed a steady flow with a pair of 
vortices fixed in the wake of the cylinder. At some value of Re between 100 and 500 the flow became 
sufficiently unsteady to display the vortex-shedding phenomenon. (Suzuki et aL3* have also observed 
the transition from a steady flow to an unsteady vortex-shedding flow for a square cylinder with a = 0" 
and dlH=O-3 at Re= 150 in a channel withfied walls as it is displaced from gld=O.17 to 0.58.) In all 
the present unsteady flow cases the vortices alternately shed from the top and bottom surfaces of the 
cylinder tended to move towards and beyond the channel midplane. The vortex shed from the top 
surface of the cylinder was always more intense than the one shed from the bottom, the difference in 
circulation intensity increasing with increasing a and decreasing gld. However, the 'vortex-wrapping ' 
phenomenon discussed under point (3) in Section 2.3 was never observed and, because of the sliding 

Figure 7. Same as Figure 5 with a=10", hlH=0-135 (g/d=O.2), d/H=O.192, Re=500 
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wall boundary condition, none of the cases calculated yielded regions of flow reversal along the 
channel walls as observed in the fixed wall channel of Davis et aL31 

Instantaneous values of the drag and lift coefficients, available in Reference 35, were obtained 
by integrating the contributions of the shear stress and pressure distributions acting along the x- and 
y-co-ordinate directions on the cylinder surfaces. Time records of these two quantities were then 
averaged over approximately 20 cycles to obtain values for the average drag, CD, and lift, CL, 
coefficients. The Strouhal number was determined from the time variations in CD and CL. The 
numbers obtained were in agreement with corresponding values determined from velocity component 
time records. All these results are plotted in Figures 8-10, where lines have been drawn through the 
points in the figures to facilitate interpretation. The lines do not necessarily imply the detailed 
interpoint variation of the quantities plotted. 

All the values of CD in Figure 8 exceed those corresponding to the case of freestream flow by a 
factor ranging from 1.25 to 2.1 at Re= 100 and from 1.35 to 2-4 at Re= 1000. They also exceed the 
values of CD corresponding to a cylinder mounted on a fixed wall. This is due to the sliding walls 
condition. At Re= 100 the trends in the data are clear for all gap sizes, with c, increasing with 
increasing a and decreasing gld. In addition, for the two larger gap sizes (gId=0-5 and 1) CD is 
observed to also increase with increasing Re. In contrast, for the smallest gap size (g/d=0-2) cD 
decreases with increasing Re for both angular orientations. The result is that as of Re > 160, 
approximately, with a fixed the value of CD maximizes somewhere between gld = 0.2 and 1. For values 
of Re > 400 this maximum appears to lie close to g/d= 0.5. 

The average lift coefficient for a square cylinder with a = 0" in a freestream is zero. Figure 9 shows 
the results for a cylinder located asymmetrically between the sliding walls of a channel. For all the 
configurations explored, CL, initially decreases with increasing Re but subsequently increases 
(modestly) to yield minima at values of Re which depend on the settings of the geometrical parameters. 

5 6i 
-a= 00.g/d=l.O 
+a=100. gfd=l.O 
--c a-200, g/d= I .O 
- 0- -a=  b. gld4.5 
- + - a=100, gldd.5 
- a- -a=-. d d d . 5  
....+..- a= d.dd-O.2 
. . . . -x . . . . a=i00. gld-CI.2 

-El - 
/------ 

/ 
0 

/ 

2 
m m 600 800 lo00 

Re 

channel with sliding walls 
Figure 8. Average drag coefficient as a function of Re for the conditions invdgated for the flow past a square cylinder in a 
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Figure 10. Strouhal number St as a function of Re for the conditions investigated for the flow past a square cylinder in a channel 

with sliding walls 
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As for C,, at Re= 100 the variations in CL are clear, the value of this quantity increasing with 
increasing a and decreasing gld. Although the crossing over of the C, curves at higher Re renders 
physical interpretation difficult, it is clear that the increase in CL due to increasing a is more 
pronounced for small values of gld than for large. Again this is attributed to the sliding walls condition. 
The CL data corresponding to a = 0" show that for Re > 280, approximately, this quantity minimizes 
with respect to gld. Similarly the CL data corresponding to gld= 1 show that for Re>350, 
approximately, this quantity also minimizes with respect to a. Negative values of CL are predicted in 
the range 500 < Re < 1000 for cylinders with u = 10" and gld = 1, and with a = 0" and gld = 0.5. 

The Strouhal number calculations plotted in Figure 10 show that this quantity is relatively 
insensitive to variations in Re and u for the largest gap size setting, gld= 1. A much stronger 
dependence on these two parameters, with St ranging between 0- 15 and 0.22, arises for the cases with 
gld= 0.5. With a decrease in gld from 0.5 to 0.2 the values of St are markedly reduced, by as much as 
45%, relative to the larger gap settings. For gld= 0.2 the larger of the two orientation angles (a = 20") 
yields the smallest value of all the Strouhal numbers, St = 0.1 at Re = 1000. This near-wall damping of 
the flow oscillations, characteristic of both fixed and sliding walls, is in keeping with the earlier 
findings of Arnal et al.33 The values of St calculated for gld= 1 and 0.5 are 5%55% larger than those 
predicted at the corresponding Re for the case of freestream flow, while the values calculated for 
gld= 0.2 are 5%-30% smaller. 

3.2. Parameter eflects on heat transfer 

Instantaneous temperature contours and streamlines are shown in Figure 11 for the case of a cylinder 
with a =O" and gld=O.5 in a channel where the sliding walls are heated relative to the cylinder and 
inlet flow. Comparing the top and middle figures shows the marked effect of vortex shedding on the 
temperature distribution in the channel. The shedding of vortices with alternating sense of rotation and 
relatively low translational velocity works to periodically thin the wall thermal layers. In this regard the 
temperature contours show that both channel walls are affected by the vortical flow. This is further 
supported by the plots of the instantaneous local Nusselt numbers for the walls, Nu&), provided in 
Figure 12. Vortex shedding induces local wall heat transfer rates that are up to four times larger along 

Figure 11. Instantaneous temperature contours and streamlines for the flow past a square cylinder in a channel with heated 
sliding walls and a = 0", h/H=0.192 (gld=0.5), d/H=0.192, Re= 500. Temperature contours without the cylinder (top); 

temperature contours with the cylinder (middle); streamlines corresponding to middle plot (bottom) 
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Figure 12. Instantaneous wall Nusselt number N ~ x )  for the flow past a square cylinder in a channel with heated sliding walls 
and a=O", h/H=0.192 (gld=0.5), dlH=O*192, Re=500 

the near-cylinder wall and 1 -8 times larger along the far-cylinder wall relative to the corresponding 
unobstructed flow. The plot also shows excellent agreement between the analytical solution of the 
unobstructed flow configuration, given by Nu,&) = (Re, Prln)'" with Re,= U s h ,  and present 
calculations. 

The dependence of the overall time- and surface-averaged channel wall Nusselt numbers, Nu,.,, on 
the cylinder orientation angle was also e~amined.~' For example, the results for the case with gld = 0.5 
and Re = 500 showed a weak increase in Nu,, from 184 at a = 0" to 198 at 20" for the near-cylinder wall 
and from 134 at 0" to 144 at 20" for the far-cylinder wall, approximately. More notable was the 
difference between the average Nusselt numbers for the two walls, as expected from Figure 11. 

Calculations for the case of a cylinder at a higher temperature than the channel walls and inlet flow 
were also performed with gld = 0.5 and Re = 500. Time-averaged values of the individual, Nuj, and 

0 5 10 15 20 

a (degrees) 

Figure 13. Time averages of individual, Gj, and total surface, ad, Nusselt numbers as a function of orientation angle a for the 
flow past a heated square cylinder in a channel with sliding walls h/H=0*192 (g/d=O-5), d/H=0.192, Re=SOO 
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total, G d ,  cylinder surface Nusselt numbers are plotted as a function of the orientation angle in Figure 
13. For all values of a the upstream or 'front' surface of the cylinder presents the highest rate of heat 
transfer, but as a is increased the rate of heat transfer from the bottom surface closely approaches that 
from the front. For all values of a the lowest rate of heat transfer occurs along the top surface of the 
cylinder, where a recirculating flow region exists. The heat transfer from this surface increases 
modestly with increasing a. The rear surface of the cylinder is the second lowest in terms of heat 
transfer rate for all values of a. The average of the four surfaces shows a weak dependence on the 
orientation angle, increasing from = 10.5 at a = 0" to 12-5 at a = 20", approximately. 

4. S U M M Y  

The characteristics of the two-dimensional flow due to an immobile cylindrical obstruction of square 
cross-section located asymmetrically between the parallel sliding walls of a channel, in the range 
100 < Re < 1000 and with an obstruction ratio d/H= 0.192, differ significantly and in a complicated 
manner from those of the same geometry with fixed walls or in a freestream. For a cylinder with wall 
distances g / d = 0 3  and 1 in a channel with sliding walls the Strouhal number is larger than for a 
cylinder in a freestream over the range 0" < a < 20". For g/d = 0.2 the opposite is true and in agreement 
with the wall damping of vortex shedding predicted by Arnal et al? for both fixed and sliding wall 
conditions. For values of g/d=O-5 and 0-2 in a sliding wall flow the Strouhal number generally 
decreases with increasing a over the range of Re explored. At these distances from the channel wall, 
increasing a significantly streamlines and stabilizes the fluid motion. Comparison of present results 
with the data of Arnal et ~ 1 . ~ ~  shows that the damping of flow oscillation is strongest for cylinders 
immediately adjacent to one of the channel walls. This is due to stabilization of the vortical motion in 
the wake of the cylinder, explained by those authors. 

For a cylinder located asymmetrically in a channel, both the drag and lift coefficients differ from 
zero. Relative to a fieestream flow or the flow in a channel with fixed walls, at the same Reynolds 
number the sliding wall condition increases the drag experienced by a cylinder for all the values of a 
and gld of this work. Present results for sliding walls agree qualitatively with the data of Davis et aL3' 
for fixed walls and show that drag increases with increasing Reynolds number and increasing blockage 
ratio d/H. (In the present flow configuration, increasing a effectively increases the blockage ratio.) 
Although the flow past a cylinder in a channel with g/d fixed and a = 20" is more streamlined than the 
flow for the same cylinder with a = O", the larger local acceleration experienced by the fluid in the first 
case (with larger effective d/H) raises the skin friction and pressure drop contributions to drag. In 
general, irrespective of its angular orientation, moving a cylinder to an intermediate location near a 
sliding wall, say from g/d= 1 to 0-5, markedly increases the drag coefficient. This is because the 
sliding wall boundary condition maintains a higher value of streamwise component of momentum for 
the fluid approaching the cylinder at the intermediate location than it does for the fluid further away 
from the wall. The result is a larger momentum deficit incurred by the flow passing the cylinder at the 
intermediate location, which shows up as an increase in drag. However, in moving even nearer to the 
wall, from g/d=O-5 to 0.2, the drag is found to decrease. Now the sliding wall boundary condition 
assists the pressure recovery in the wake of the cylinder with an attendant reduction in drag. Finally, as 
shown by Arnal et alp3  placing the cylinder immediately adjacent to the sliding wall increases the 
drag. Now there is zero flow between the cylinder and the wall and all the fluid must pass over the 
cylinder in a highly irreversible manner. The associated pressure loss is responsible for the increase in 

Except for the narrow range of conditions shown in Figure 9, a cylinder located asymmetrically 
between the sliding walls of a channel generally experiences a positive lift coefficient, the largest 

drag. 
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values of lift being associated with small gld and large a. The largest lift-to-drag ratios in this work 
were also associated with the smallest g/d and largest a. 

It was expected that vortex shedding from a cylinder should significantly affect the rate of heat 
transfer from the sliding walls of a channel. It is shown that a cylinder with an obstruction ratio 
dlH = 0.192 at a wall distance gld = 0.5 can increase by as much as 40% the average heat transfer from 
the sliding wall nearest the cylinder relative to the same unobstructed flow. The vortices shed from a 
cylinder induce large time-dependent spatial variations in wall heat transfer which, along the near- 
cylinder wall, can reach values two to three times larger than those observed in the corresponding 
unobstructed flow. Over the range examined, the top and bottom surfaces of a heated cylinder showed 
the strongest dependence on the orientation angle, the average Nusselt numbers of these two surfaces 
increasing with a. For all a with gld = 0.5 the heat transfer from the bottom cylinder surface was about 
three times larger than fiom the top. However, the Nusselt number for the entire cylinder was only 
weakly dependent on a. 

A limitation in this numerical analysis has been the assumption of a two- dimensional streamlined 
flow downstream of the cylinder. For the flow past a cylinder in a freestream or in a channel with fixed 
walls, with incresing Reynolds number one expects a two- to three-dimensional transition with the 
eventual appearance of turbulence. In the case of a freestream flow, numerical data for cylinders of 
circular cross-section support the establishment of the turbulent regime by Re = 400. To our knowledge 
the corresponding critical Reynolds number has not been established for square cylinders in channels 
with fixed or sliding walls. It seems reasonable to assume that for a small square cylinder in a large 
channel with fixed walls the critical Reynolds number should be near 400. To what value, then, does 
the critical Reynolds number evolve ifthe walls of the channel are brought closer together and made to 
slide? From the present results it is clear that the answer to this question depends on the obstruction 
ratio d/H, the cylinder-wall spacing g/d and the orientation angle a, with values of these parameters 
which stabilize the flow working to increase the critical Reynolds number. The resolution of this 
interesting question is not easy, since it requires precise experimentation with considerable attention to 
detail or accurate and computationally intensive three-dimensional calculations. It is the subject of 
continuing work. 
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APPENDIX: NOMENCLATURE 

a' contravariant base vector 
CP 
CD drag coefficient, ( ~ J d ) / + p q  
CL lift coefficient, (FJd)/+pv 
d diameter of the square cylinder of d x d cross-section 

vortex-shedding frequency 
drag force, aligned in x-co-ordinate direction 

f 
Fx 

specific heat at constant pressure 
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lift force, aligned in y-co-ordinate direction 
distance between the square cylinder and nearest channel wall, h - d/2 
contravariant metric tensor 
y-co-ordinate location of the centre of the square cylinder 
heat transfer coefficient, -k(DT/Dn)IAT 
heat transfer coefficient for the entire cylinder 
heat transfer coefficient for jth cylinder surface 
local heat transfer coefficient for a channel wall 
heat transfer coefficient for an entire channel wall 
distance between channel walls 
Jacobian of the co-ordinate transformation 
thermal conductivity 
x-co-ordinate location of the centre of the square cylinder 
unit vector normal to a surface 
co-ordinate normal to a surface 
Nusselt number for the entire cylinder, hddlk 
Nusselt number for jth cylinder surface, hplk 
local Nusselt number for a channel wall, hw(x)x/k 
Nusselt number for an entire channel wall, h,W/k 
pressure 
Prandtl number, vl1 
Reynolds number based on d, U1dh 
Reynolds number based on H, UJIv 
grid Reynolds number, UiAx,,,Jv 
Strouhal number, fdlUi 
time 
temperature 
velocity vector 
x-velocity component 
contravariant velocity component in the 11-direction 
contravariant velocity component in the (’-direction 
bulk average or uniform fluid velocity at the channel inlet plane 
translating velocity of the channel walls 
y-velocity component 
length of the channel 
Cartesian co-ordinate 
Cartesian coordinate 

Greek letters 
a 
A characteristic difference 
1 thermal diffisivity, Wpc,, 
CI dynamic viscosity 
v .  kinematic viscosity, p / p  
n’ ith curvilinear co-ordinate 

angular orientation of the square cylinder 

streamwise curvilinear co-ordinate 
transverse curvilinear co-ordinate 
density 

r ’ 
t2 
P 

Other 
- superscript denoting time-averaged value 
min subscript denoting minimum value 
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